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Abstract
Pre-computation and materialization of views with aggregate
functions is a common technique in Data Warehouses. Due to the
complex structure of the warehouse and the different profiles of the
users who submit queries, there is need for tools that will automate
the selection and management of the materialized data. In this
paper we present DynaMat, a system that dynamically materializes
information at multiple levels of granularity in order to match the
demand (workload) but also takes into account the maintenance
restrictions for the warehouse, such as down time to update the
views and space availability. DynaMat unifies the view selection
and the view maintenance problems under a single framework using
a novel “goodness” measure for the materialized views. DynaMat
constantly monitors incoming queries and materializes the best set
of views subject to the space constraints. During updates, DynaMat
reconciles the current materialized view selection and refreshes the
most beneficial subset of it within a given maintenance window.
We compare DynaMat against a system that is given all queries
in advance and the pre-computed optimal static view selection.
The comparison is made based on a new metric, the Detailed
Cost Savings Ratio introduced for quantifying the benefits of view
materialization against incoming queries. These experiments show
that DynaMat’s dynamic view selection outperforms the optimal
static view selection and thus, any sub-optimal static algorithm that
has appeared in the literature.

1 Introduction
Materialized views represent a set of redundant entities
in a data warehouse that are used to accelerate On-Line
Analytical Processing (OLAP). A substantial effort of the
academic community in the last years [HRU96, GHRU97,
Gup97, BPT97, SDN98] has been for a given workload,
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to select an appropriate set of views that would provide
the best performance benefits. The amount of redundancy
added is controlled by the data warehouse administrator
who specifies the space that is willing to allocate for the
materialized data. Given this space restriction and, if
available, some description of the workload, these algorithms
return a suggested set of views that can be materialized for
better performance.

This static selection of views however, contradicts the
dynamic nature of decision support analysis. Especially
for add-hoc queries where the expert user is looking for
interesting trends in the data repository, the query pattern
is difficult to predict. In addition, as the data and these
trends are changing overtime, a static selection of views
might very quickly become outdated. This means that
the administrator should monitor the query pattern and
periodically “re-calibrate” the materialized views by re-
running these algorithms. This task for a large warehouse
where many users with different profiles submit their queries
is rather complicated and time consuming. Microsoft’s [Aut]
is a step towards automated management of system resources
and shows that vendors have realized the need to simplify
the life of the data warehouse administrator.

Another inherit drawback of the static view selection
is that the system has no way of tuning a wrong
selection, i.e use results of queries that couldn’t be
answered by the materialized set. Notice that although
OLAP queries take an enormous amount of disk I/O and
CPU processing time to be completed, their output is,
in many cases, relatively small. “Find the total
volume of sales for the last 10 years” is
a fine example of that. Processing this query might take
hours of scanning vast tables and aggregating, while the
result is just an 8-byte float value that can be easily “cached”
for future use. Moreover, during roll�up operations, when
we access data at a progressively coarser granularity, future
queries are likely to be totally computable out of the results
of previous operations, without accessing the base tables at
all. Thus, we expect a great amount of inter-dependency
among a set of OLAP queries.

Furthermore, selecting a view set to materialize is just
the tip of the iceberg. Clearly, query performance is



tremendously improved as more views are materialized.
With the ratio $$/disk-volume constantly dropping, disk
storage constraint is no longer the limiting factor in the
view selection but the window to refresh the materialized
set during updates. More materialization implies a larger
maintenance window. This update window is the major data
warehouse parameter, constraining over-materialization.
Some view selection algorithms [Gup97, BPT97] take into
account the maintenance cost of the views and try to minimize
both query-response time and the maintenance overhead
under a given space restriction. In [TS97] the authors
define the Data Warehouse configuration problem as a state-
space optimization problem where the maintenance cost of
the views needs to be minimized, while all the queries can
be answered by the selected views. The trade-off between
space of pre-computed results and maintenance time is also
discussed in [DDJ+98]. However, none of these publications
considers the dynamic nature of the view selection problem,
nor they propose a solution that can adapt on the fly to
changes in the workload.

Our philosophy starts with the premise that a result is a
terrible thing to waste and that its generation cost should be
amortized over multiple uses of the result. This philosophy
goes back to our earlier work on caching of query results on
the client’s database ADMS+� architecture [RK86, DR92],
the work on prolonging their useful life through incremental
updates [Rou91] and their re-use in the ADMS optimizer
[CR94]. This philosophy is a major departure from the static
paradigm of pre-selecting a set of views to be materialized
and run all queries against this static set.

In this paper we present DynaMat, a system that
dynamically materializes information at multiple levels of
granularity in order to match the demand (workload) but
also takes into account the maintenance restrictions for the
warehouse, such as down time to update the views and
space availability. DynaMat unifies the view selection and
the view maintenance problems under a single framework
using a novel “goodness” measure for the materialized
views. DynaMat constantly monitors incoming queries
and materializes the best set of views subject to the space
constraints. During updates, DynaMat reconciles the current
materialized view selection and refreshes the most beneficial
subset of it within a given maintenance window. The critical
performance issue is how fast we can incorporate the updates
to the warehouse. Clearly if naive re-computation is assumed
for refreshing materialized views, then the number of views
will be minimum and this will lessen the value of DynaMat.
On the other hand, efficient computation of these views
using techniques like [AAD+96, HRU96, ZDN97, GMS93,
GL95, JMS95, MQM97] and/or bulk incremental updates
[RKR97] tremendously enhances the overall performance of
the system. In DynaMat any of these techniques can be
applied. In section 2.4.2 we propose a novel algorithm that
based on the goodness measure, computes an update plan for
the data stored in the system.

The main benefit of DynaMat, is that it represents a
complete self-tunable solution that relieves the warehouse
administrator from having to monitor and calibrate the
system constantly. In our experiments, we compare
DynaMat against a system that is given all queries in
advance and the pre-computed optimal static view selection.
These experiments show that the dynamic view selection
outperforms the optimal static view selection and thus,
any sub-optimal static algorithm proposed in the literature
[HRU96, GHRU97, Gup97, BPT97].

The rest of the paper is organized as follows: Section 2
gives an overview of the system’s architecture. Subsec-
tions 2.2 and 2.3 discuss how stored results are being reused
for answering a new query, whereas in section 2.4 we ad-
dress the maintenance problem for the stored data. Section 3
contains the experiments and in section 4 we draw the con-
clusions.

2 System overview
DynaMat is designed to operate as a complete view
management system, tightly coupled with the rest of the
data warehouse architecture. This means that DynaMat
can co-exist and co-operate with caching architectures that
operate at the client site like [DFJ+96, KB96]. Figure 1
depicts the architecture of the system. View Pool V is the
information repository that is used for storing materialized
results. We distinguish two operational phases of the system.
The first one is the “on-line” during which DynaMat answers
queries posed to the warehouse using the Fragment Locator
to determine whether or not already materialized results can
be efficiently used to answer the query. This decision is
based upon a cost model that compares the cost of answering
a query through the repository with the cost of running the
same query against the warehouse. A Directory Index is
maintained in order to support sub-linear search in V for
finding candidate materialized results. This structure will
be described in detail in the following sections. If the
search fails to reveal an efficient way to use data stored
in V for answering the query then the system follows the
conventional approach where the warehouse infrastructure
(fact table+indices) is queried. Either-way, after the result is
computed and given to the user, it is tested by the Admission
Control Entity which decides whether or not it is beneficial
to store it in the Pool.

During the on-line phase, the goal of the system is to
answer as many queries as possible from the pool, because
most of them will be answered a lot faster from V than from
the conventional methods. At the same time DynaMat will
quickly adapt to new query patterns and efficiently utilize the
system resources.

The second phase of DynaMat is the update phase, during
which updates received from the data sources get stored
in the warehouse and materialized results in the Pool get
refreshed. In this paper we assume, but we are not restricted
to, that the update phase is “off-line” and queries are not
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Figure 1: DynaMat’s architecture

permitted during this phase. The maximum length of the
update window W is specified by the administrator and
would probably lead us to evict some of the data stored
in the pool as not update-able within this time constraint.

2.1 View Pool organization
The View Pool utilizes a dedicated disk storage for managing
materialized data. An important design parameter is the type
of secondary storage organization that will be used. DynaMat
can support any underling storage structure, as long as we can
provide a cost model for querying and updating the views.

Traditionally summary data are stored as relational tables
in most ROLAP implementations, e.g [BDD+98]. However,
tables alone are not enough to guarantee reasonable query
performance. Scanning a large summary table to locate
an interesting subset of tuples can be wasteful and in
some cases slower than running the query against the
warehouse itself, if there are no additional indices to support
random access to the data. Moreover, relational tables
and traditional indexing schemes, are in most cases space
wasteful and inadequate for efficiently supporting bulk
incremental update operations. More eligible candidate
structures include multidimensional arrays like chunked files
[SS94, DRSN98] and also Cubetrees [RKR97]. Cubetrees
are multidimensional data structures that provide both
storage and indexing in a single organization. In [KR98] we
have shown that Cubetrees, when used for storing summary
data, provide extremely fast update rates, better overall query
performance and better disk space utilization compared to
relational tables and conventional indexes.

During the “on-line” phase of the warehouse, results from
incoming queries are being added in the Pool. If the pool had
unlimited disk space, the size of the materialized data would
grow monotonically overtime. During an update phase ui,
some of the materialized results may not be update-able
within the time constraint of W and thus, will be evicted
from the pool. This is the update time bound case shown
in Figure 2 with the size of the pool increasing between the
two update phases u1 and u2. The two local minimums
correspond to the amount of materialized data that can be
updated within W and the local maximums to the pool size
at the time of the updates.
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Figure 2: The time bound case
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Figure 3: The space bound case

The space bound case is when the size of the pool is the
constraining factor and not W . In this case, when the pool
becomes full, we have to use some replacement policy. This
can vary from simply not admitting more materialized results
to the pool, to known techniques like LRU, FIFO etc, or to
using heuristics for deciding whether or not a new result is
more beneficial for the system than an older one. Figure 3
shows the variations in the pool size in this case. Since we
assumed a sufficiently large update window W , the stored
results are always update-able and the actual content of the
pool is now controlled by the replacement policy.

Depending on the workload, the disk space and the update
window, the system will in some cases act as in time bound
and in others as in space bound, or both. In such cases views
are evicted from the pool, either because there is no more
space or they can not be updated within the update window.

2.2 Using MRFs as the basic logical unit of the pool

A multidimensional data warehouse (MDW) is a data
repository in which data is organized along a set of
dimensions D = fd1; d2; : : : ; dng. A possible way to
design a MDW is the star-schema [Kim96] which, for each
dimension it stores a dimension table Di that has di as its
primary key and also uses a fact table F that correlates
the information stored in these tables through the keys
d1; : : : ; dn. The Data Cube operator [GBLP96] performs
the computation of one or more aggregate functions for
all possible combinations of grouping attributes (which are
actually attributes selected from the dimension tables Di).
The lattice [HRU96] representation of the Data Cube in
Figure 4 shows an example for three dimensions, namely
a, b and c. Each node in the lattice represents a view that
aggregates data over the attributes present in that node. For
example (ab) in an aggregate view over the a and b grouping
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Figure 5: Querying stored MRFs

The lattice is frequently used by view selection algorithms
[HRU96, GHRU97, SDN98] because it captures the compu-
tational dependencies among the elements of the Data Cube.
Such dependencies are shown in Figure 4 as directed edges
that connect two views, if the pointed view computes the
other one. In Figure 4 we show only dependencies between
adjacent views and not those in the transitive closure of this
lattice. For example, view (a) can be computed from view
(ab), while view (abc) can be used to derive any other view.

In this context, we assume that the warehouse workload is a
collection of Multidimensional Range queries (MR-queries)
each of which can be visualized as a hyper-plane in the Data
Cube space using a n-dimensional “vector” ~q:

~q = fR1;R2; : : : ;Rng (1)

whereRi is a range in the dimension’s di domain. We restrict
each range to be one of the followings:

� a full range: Ri = (mindi ;maxdi), where mindi and
maxdi are the minimum and maximum values for key
di.

� a single value for di

� an empty range which denotes a dimension that is not
present in the query.

1For simplicity in the notation, in this paper we do not consider the case
where the grouping is done over attributes other than the dimension keys di.
However our framework is still applicable in the presence of more grouping
attributes and hierarchies, using the extensions of [HRU96] for the lattice.

For instance, suppose thatD = fproduct; storeg is the set of
dimensions in the MDW, with values 1 � product � 1000
and 1 � store � 200 respectively. The hyper-plane
~q = f50; (1;200)g corresponds to the SQL query:

select product, store, aggregate list
from F
where product=50
group by product, store

where aggregate list is a list of aggregate functions (e.g
sum,count). If the grouping was done on attributes different
than the dimension keys then the actual SQL description
would include joins between some dimension tables and
the fact table. This type of queries are called slice queries
[GHRU97, BPT97, KR98]. We prefer the MR notation over
the SQL description because it describes the workload in the
Data Cube space independent of the actual schema of the
MDW.

The same notation permits us to represent the materialized
results of MR queries which we call Multidimensional Range
Fragments (MRFs). DynaMat maps each SQL query to
one, or more, MR queries. Given such a MR-query and
a cost model for accessing the stored MRFs, we want to
find the “best” subset of them in V to answer q. Based
on the definition of MRFs, we argue that is doesn’t pay to
check for combinations of materialized results for answering
q. With extremely high probability, q is best computable
out of a single fragment f or not computable at all. We
will try to demonstrate this with the following example:
Suppose that the previous query ~q = f50; (1; 200)g is given.
If no single MRF in the pool computes q, then a stored
MRF that partially computes q is of the form f50; s idg
or f(1;1000); s idg, where s id is some store value, see
Figure 5. In order to answer q there should be at least one
such fragment for all values of s id between 1 and 200.
Even if such a combination exists, it is highly unlikely that
querying 200 different fragments to get the complete result
provides a cost-effective way to answer the query.

MRFs provide a slightly coarser grain of materialization
if we compare them with a system that materializes views
with arbitrary ranges for the attributes. However, if we allow
fragments with arbitrary ranges to be stored in the pool, then
the probability that a single stored fragment can solely be
used to answer a new query is rather low, especially if most
of the materialized results are small, i.e they correspond to
small areas in the n-dimensional space. This means that
we will need to use combinations of stored fragments and
perform costly duplicate eliminations to compute an answer
for a given query. In the general case that k fragments
compute some portion of the query there might be up to 2k

combinations that need to be checked for finding the most
efficient way to answer the query. Having too many small
fragments with possible overlapping sections which require
additional filtering in the pool, results in poor performance
not only during query execution but also during updates. In



most cases, updating fewer, larger fragments of views (as
in a MRF-pool) is preferable. We denote the number of
fragments in the pool as jVj. In section 2.4.2 we show that
the overhead of computing an update plan for the stored data
grows linearly with jVj2, making the MRF approach more
scalable.

2.3 Answering queries using the Directory Index
As we described, when a MR-query q is posted to the data
warehouse, we scan V for candidate fragments that answer
q. Given a MRF f and a query q, f answers q iff for
every non-empty range Ri of the query, the fragment stores
exactly the same range and for every empty range Ri = ()
the fragment’s corresponding range is either empty or spans
the whole domain of dimension i2. We say in this case that
hyper-plane ~f covers ~q.

Instead of testing all stored fragments against the query,
DynaMat uses a directory, the Directory Index (see Figure 1),
to further prune the search space. This is actually a set of
indices connected through the lattice shown in Figure 4. Each
node has a dedicated index that is used to keep track of all
fragments of the corresponding view that are stored in the
pool. For each fragment f there is exactly one entry that
contains the following info:

� Hyper-plane ~f of the fragment

� Statistics (e.g number of accesses, time of creation, last
access)

� The father of f (explained below).

For our implementation we used R-trees based on the ~f

hyper-planes to implement these indices. When a query q ar-
rives, we scan using ~q all views in the lattice, that might con-
tain materialized results f whose hyper-planes ~f cover ~q. For
example if ~q = f(1;1000); (); Smithg is the query hyper-
plane for dimensions product, store and customer, then
we first scan the R-tree index for view (product; customer)
using rectangle f(1; 1000); (Smith; Smith)g. Figure 6
depicts a snapshot of the corresponding R-tree for view
(product; customer) and the search rectangle. The shaded
areas denote MRFs of that view that are materialized in
the pool. Since no fragment is found, based on the
dependencies defined in the lattice, we also check view
(product; store; customer) for candidate fragments. For
this view, we “expand” the undefined in q store dimen-
sion and search the corresponding R-tree using rectangle
f(1;1000); (minstore;maxstore); (Smith;Smith)g. If a
fragment is found, we “collapse” the store column and ag-
gregate the measure(s) to compute the answer for q.

Based on the content of the pool V , there are three
possibilities. The first is that a stored fragment f matches
exactly the definition of the query. In this case, f is retrieved

2In the latter case we have to perform an additional aggregation to
compute the result, as will be explained.
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Figure 6: Directory for view (product; customer)

and returned to the user. If no exact match exists, assuming
we are given a cost model for querying the fragments, we
select the best candidate from the pool, to compute q. If view
f is the materialized result of q, the fragment that was used
to compute f is called the father of f and is denoted as f́ . If
however no fragment in V can answer q, the query is handled
by the warehouse. In both cases the result is passed to the
Admission Control Entity that checks if it can be stored in
the pool.

As the number of MRFs stored in the pool is typically in
the order of thousands, we can safely assume that in most
cases the Directory Index will be memory resident. Our
experiments validate this assumption and indicate that the
look-up cost in this case is negligible. In cases where the
index can not fit in memory, we can take advantage of the
fact that the pool is reorganized with every update phase and
use a packing algorithm [RL85] to keep the R-trees compact
and optimized at all times.

2.4 Pool maintenance
For maintaining the MRF-pool, we need to derive a goodness
measure for choosing which of the stored fragments we
prefer. This measure is used in both the on-line and the
update phases. Each time DynaMat reaches the space or time
bounds we use the goodness for replacing MRFs. There can
be many criteria to define such a goodness. Among those we
tested, the following four showed the best results:

� The time that the fragment was last accessed by the
system to handle a query:

goodness(f ) = tlast access(f )

This information is kept in the Directory Index. Using
this time-stamp as a goodness measure, results in an Least
Recently Used (LRU) type of replacement in both cases.

� The frequency of access freq(f ) for the fragment:

goodness(f ) = freq(f )

The frequency is computed using the statistics kept in the
Directory Index and results in a Least Frequently used
(LFU) replacement policy.



� The size size(f) of the result, measured in disk pages:

goodness(f ) = size(f)

The intuition behind this approach is that larger fragments
are more likely to be hit by a query. An additional
benefit of keeping larger results in the pool is that jVj gets
smaller, resulting in faster look-ups using the Fragment
Locator and less complexity while updating the pool. We
refer to this case as the Smaller-Fragment-First (SFF)
replacement policy.

� The expected penalty rate of recomputing the fragment,
if it is evicted, normalized by its actual size:

goodness(f ) =
freq(f ) � c(f)

size(f)

c(f) is the cost of re-computing f for a future query. We
used as an estimate of c(f ) the cost of re-computing the
fragment from its father, which is computable in constant
time. This metric is similar to the one used in [SSV96]
for their cache replacement and admission policy. We
refer to this case as the Smaller Penalty First (SPF).

In the remaining of this section we describe how the
goodness measure is used to control the content of the pool.

2.4.1 Pool maintenance during queries

As long as there is enough space in the pool, results from
incoming queries are always stored in V . In cases where we
hit the space constraint, we have to enforce a replacement
policy. This decision is made by our replace algorithm
using the goodnessmeasure of the fragments. The algorithm
takes as input the current state of the pool V , the new
computed result f and the space restriction S. A stored
fragment is considered for eviction only if its goodness is less
than that of the new result. At a first step a setFevicted of such
fragments with the smaller goodness values is constructed.
If during this process we can not find candidate victims the
search is aborted and the new result is denied storage in
the pool. When a fragment fvictim is evicted the algorithm
updates the father pointer for all other fragments that point
to fvictim. In section 2.4.2 we discuss the maintenance of
the father pointers.

2.4.2 Pool maintenance during updates

When the base relations (sources) are updated, the data
stored in the MDW, and therefore the fragments in the
pool, have to be updated too. Different update policies
can be implemented, depending on the types of updates, the
properties of the data sources and the aggregate functions
that are being computed by the views. Several methods have
been proposed [AAD+96, HRU96, ZDN97] for fast (re)-
computation of Data Cube aggregates. On the other hand,
incremental maintenance algorithms have been presented

[GMS93, GL95, JMS95, MQM97, RKR97] that handle
grouping and aggregation queries.

For our framework, we assume that the sources provide
the differentials of the base data, or at least the log files are
available. If this is the case, then an incremental update
policy can be used to refresh the pool. In this scenario we
also assume that all interesting aggregate functions that are
computed are self-maintainable [MQM97] with respect to
the updates that we have. This means that a new value for
each function can be computed solely from the old value and
from the changes to the base data.

Computing an initial update plan
Given a pool with jVj being in the order of thousands, our
goal is to derive an update plan that allows us to refresh as
many fragments as possible within a given update window
W . Computing the deltas for each materialized result is
unrealistic, especially if the deltas are not indexed somehow.
In our initial experiments we found out that the time spent
on querying the sources to get the correct deltas for each
fragment is the dominant factor. For that reason our pool
maintenance algorithm extracts, in a preprocessing step, all
the necessary deltas and stores them in a separate view
dV materialized as a Cubetree. This provides a efficient
indexing structure for the deltas against multidimensional
range queries. The overhead of loading a Cubetree with the
deltas is practically negligible3 compared to the benefit of
having the deltas fully indexed. Assume that lowdi and hidi
are the minimum and maximum values for dimension di that
are stored in all fragments in the pool. These statistics are
easy to maintain in the Directory Index. View dV includes
all deltas within the hyper-plane:

~dV = f(lowd1 ; hid1); : : : ; (lowdn ; hidn )g

For each fragment f in V we consider two alternative ways
of doing the updates:

� We can query dV to get the updates that are necessary for
refreshing f and then update the fragment incrementally.
We denote the cost of this operation as UCI(f ). It
consists of the cost of running the MR-query ~f againstdV
to get the deltas and the cost of updating f incrementally
from the result.

� If the fragment was originally computed out of another
result f́ we estimate the cost of recomputing f from its
father f́ , after f́ has been updated. The cost of computing
f from its father is denoted as UCR(f ) and includes the
cost of running MR-query ~f against the fragment f́ , plus
the cost of materializing the result.

The system computes the costs for the two4 alternatives
and picks the minimum one, denoted as UC(f ) for each

3Cubetree’s loading rate is about 12GB/hour in a Ultra 60 with a single
SCSI drive.

4A third alternative, is to recompute each fragment from the sources.
This case is not considered here, because the incremental approach is



fragment. Obviously, this plan is not always the best one.
There is always the possibility that another result f1 has
been added in the pool after f was materialized. Since
the selection of the father of f was done before f1 was
around, as explained in section 2.3, the above plan does
not consider recomputing f from f1. An eager maintenance
policy of the father pointers would be to refine them whenever
necessary, e.g set father(f ) = f1, if it is more cost effective
to compute f from f1 than from its current father f́ . We have
decided to be sloppy and not refine the father pointers based
on experiments that showed negligible differences between
the lazy and the eager policy. The noticeable benefit is
that the lazy approach reduces the worst case complexity of
the replace and the makeFeasible algorithm that is
discussed in the next section fromO(jVj3) down-toO(jVj2),
thus making the system able to scale for large number of
fragments. By the end of this phase, the system has computed
the initial update plan, which directs the most cost-effective
way to update each one of the fragments using one of the two
alternatives, i.e incrementally from dV or by re-computation
from another fragment.

Computing a feasible update plan for a given window

The total update cost of the pool isUC(V) =
P

f2V UC(f ).
If this cost is greater than the given update window W we
have to select a portion of V that will not be materialized
in the new updated version of the pool. Suppose that we
choose to evict some fragment f . If f is the father of another
fragment fchild that is to be recomputed from f , then the
real reduction in the update cost of the pool is less than
UC(f ), since the update cost of fchild increases. For the lazy
approach for maintaining the father pointer we forward the
father pointer for fchild: set father(fchild) = father(f ).
We now have to check if recomputing fchild from father(f )
is still a better choice than incrementally updating fchild from
dV . If UCnew(fchild) is the new update cost for fchild then
the potential update delta, i.e the reduction in UC(V), if we
evict fragment f is:

Udelta(f ) = UC(f )�
X

fchild2V :father(fchild )=f

(UCnew(fchild)�UC
old(fchild))

If the initial plan is not feasible, we discard at a first step
all fragments whose update cost UC(f ) is greater than the
window W . If we still hit the time constraint, we evict
more fragments from the pool. In this process, there is no
point in evicting fragments whose Udelta value is less or
equal to zero. Having such fragments in the pool reduces
the total update cost because all their children are efficiently
updated from them. For the remaining fragments we use the
goodness measure to select candidates for eviction until the
remaining set is update-able within the given window W . If
the goodness function is computable in constant time, the

expected to be faster. However, for sources that do not provide their
differentials during updates, we can consider using this option.

cost for k evictions is O(kjVj). In the extreme case where
W is too small that only a few fragments can be updated this
leads to anO(jVj2) total cost for computing a feasible update
plan. However, in many cases just a small fraction of the
stored results will be discarded resulting in close to O(jVj)
complexity.

3 Experiments
The comparison and analysis of the different aspects of the
system made in this section is based on a prototype that we
have developed for DynaMat. This prototype implements
the algorithms and different policies that we present in this
paper as well as the Fragment Locator and the Directory
Index, but not the pool architecture. For the latter we used
the estimator of the Cubetree Datablade [ACT97] developed
for the Informix Universal Server for computing the cost of
querying and updating the fragments.

We have created a random MR-query generator that
is tuned to provide different statistical properties for the
generated query sets. A important issue for establishing
a reasonable set of experiments was to derive the measures
to base the comparisons upon. The Cost Saving Ratio (CSR)
was defined in [SSV96] as a measure of the percentage of
the total cost of the queries saved due to hits in their cache
system. This measure is defined as:

CSR =

P
i cihiP
i ciri

where ci is the cost of execution of query qi without using
their cache, hi is the number of times that the query was
satisfied in the cache and ri is the total number of references
to that query. This metric is also used in [DRSN98] for
their experiments. Because query costs vary widely, CSR is

more appropriate metric than the common hit ratio:
P

i
hiP

i
ri

.

However, a drawback in the above definition for our case,
is that it doesn’t capture the different ways that a query qi
might “hit” the Pool. In the best scenario, qi exactly matches
a fragment in V . In this case the savings is defined as ci,
where ci is the cost of answering the query at the MDW.
However, in cases where another result is used for answering
qi the actual savings depend on how “close” this materialized
result is to the answer that we want to produce. If cf is cost
of querying the best such fragment f for answering qi, the
savings in this case is ci�cf .5 To capture all cases we define
the savings provided by the pool V for a query instance qi as:

si =

8<
:

0 if qi can not be answered by V
ci if there is an exact match for qi in V
ci � cf if f from V was used to answer qi

using the above formula we define the Detailed Cost Saving

5
ci and cf do not include the cost to fetch the result which is payable

even if an exact match is found.
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Figure 7: The time bound case, first 15x1500 queries

Ratio as:

DCSR =

P
i siP
i ci

DCSR provides a more accurate measure than CSR for OLAP
queries. CSR uses a “binary” definition of a hit: a query hits
the pool or not. For instance if a query is computed at the
MDW with cost ci = 10;000 and from some fragment f with
cost cf = 9;500, CSR will return a savings of 10; 000 for the
“hit”, while DCSR will credit the system will only 500 units
based on the previous formula. DCSR captures the different
levels of effectiveness of the materialized data against the
incoming queries and describes better the performance of
the system.

The rest of this section is organized as follows: Subsec-
tion 3.1 makes a direct comparison of the different ways
to define the goodness as described in 2.4. Subsection 3.2
compares the performance of DynaMat against a system that
uses the optimal static view selection policy. All experi-
ments were ran using an Ultra SPARC 60 with 128MB of
main memory.

3.1 Comparison of different goodness policies
In this set of experiments we compare the DCSR under the
four different goodness policies LRU, LFU, SFF and SPF.
We used a synthetically generated dataset that models super-
market transactions, organized by the star schema. The
MDW had 10 dimensions and a fact table containing 20
million tuples. We assumed 50 update phases during the
measured life of the system. During each update phase we
generated 250,000 new tuples for the fact table that had to
be propagated to the stored fragments. The size of the full
Data Cube for this base data after all updates where applied
was estimated to be about 708GB. We generated 50 query
sets with 1,500 MR-queries each, that were ran between the
updates. These queries were selected uniformly from all
210 = 1; 024 different views in the Data Cube lattice. In
order to simulate hot spots in the query pattern the values
asked by the queries for each dimension are following the
80-20 law: 80% of the times a query was accessing data from
20% of the dimension’s domain. We also ran experiments
for uniform and Gaussian distributions for the query values
but are not presented here as they were similar to the 80-20%
distribution.
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Figure 8: The time bound case, remaining 35x1500 queries
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Figure 9: The space bound case

For the first experiment we tested the time-bound case.
The size of the pool was chosen large enough to guarantee
no replacement during queries and the time allowed for
updating the fragments was set to 2% of WData Cube, where
WData Cube is the estimated time to update the full Data
Cube. For a more clear view we plot in Figure 7 the DCSR
overtime for the first 15 sets of queries, starting with an
empty pool. In the graph we plot the cumulative value of
DCSR at the beginning of each update phase, for all queries
that happened up to that phase. The DCSR value reaches
41.4% at the end of the first query period of 1,500 queries
that were executed against the initially empty pool. This
shows that simply by storing and reusing computed results
from previous queries, we cut down the cost of accessing
the MDW to 58.6%. Figure 8 shows how DCSR changes
for the remaining queries. All four policies quickly increase
their savings, by refining the content of the pool while doing
updates, up to a point where all curves flatten out. At all
times, SPF policy is the winner with 60.71% savings for the
whole run. The average I/O per query, was 94.84, 100.08,
106.18 and 109.09 MB/query for the SPF, LFU, LRU and
SFF policies respectively. The average write-back I/O cost
due to the on-the-fly materialization was about the same in
all cases ('19.8MB/query). For the winner SPF policy the
average time spend on searching the Directory Index was
negligible (about 0.4msecs/query). Computing a feasible
update plan took on the average 37msecs, and 51msecs in
the worst case. The number of MRFs stored in the pool by
the end of the last update phase was 206.

Figure 9 depicts DCSR overtime in the space-bound case
for the last 35 sets of queries, calculated at the beginning
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Figure 10: The space & time bound case

of each update phase. In this experiment there was no time
restriction for doing the updates, and the space that was
allocated for the pool was set to 14GB, i.e 2% of the full
Data Cube size. In this case, the content of the pool is
managed by the replace algorithm, as the limited size of
the pool results in frequent evictions during the on-line mode.
Again the SPF policy showed the best performance with a
DCSR of 59.58%. For this policy, the average time spend on
the replace algorithm, including any modifications on the
Directory Index, was less that 3msecs per query. Computing
the initial update plan for the updates, as explained in
section 2.4.2, took 10msecs on the average. Since there was
no time restriction and thus, the plan was always feasible,
there was no additional overhead for refining this plan. The
final number of fragments in the pool was 692.

In a final experiment we tested the four policies for the
general case, where the system is both space and time bound.
We varied the time window for the updates from 0.2% up
to 5% of WData Cube and the size of the pool from 0.2%
up to 5% of the full Data Cube size, both in 0.2% intervals.
Figure 10 shows the DCSR for each pair of time and space
settings for the SPF policy, that outperformed the other
three. We can see that even with limited resources DynaMat
provides substantial savings. For example, with just 1.2%
of disk space and 0.8% time window for the updates, we get
over 50% savings compared to accessing the MDW.

3.2 Comparison with the optimal static view selection

In the experiments in the previous section we saw that
the SPF policy provides the best goodness definition for
a dynamic view (fragment) selection during both updates
(time bound case) and queries (space bound case), or both.
An important question however is how the system compares
with a static view selection algorithm [HRU96, GHRU97,
Gup97, BPT97] that considers only fully materialized views.
Instead of comparing each one of these algorithms with
our approach, we implemented SOLVE, a module that
given a set of queries, the space and time restrictions,
it searches exhaustively all feasible view selections and
returns the optimal one for these queries. For a Data Cube
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Figure 11: DCSR per view for uniform queries on the views

lattice with n dimensions and no hierarchies there are 2n

different views. A static view selection, depending on the
space and time bounds, contains some combination of these
views. For for n = 6, the search space contains 226

=
18;446; 744;073;709; 551; 616 possible combinations of the
64 views of the lattice. Obviously some pruning can be
applied. For example, if a set of views is found feasible there
is no need to check any of its subsets. Additional pruning
of large views is possible depending on the space and time
restrictions that are specified, however for non trivial cases
this exhaustive search is not feasible even for small values
of n.

We used SOLVE to compute the optimal static view
selection for a six-dimensional subset of our supermarket
dataset, with 20 million tuples in the fact table. There
were 40 update phases, with 100 thousand new tuples being
added in the fact table each time. The time window for
the updates was set to the estimated 2% of that of the full
Data Cube (WData Cube). We created 40 sets of 500 MR-
queries each, that were executed between the updates. These
queries targeted uniformly the 64 different views in the 6-
dimensional Data Cube lattice. This lack of locality of the
queries represents the worst-case scenario for the dynamic
case that needs to adapt on-the-fly to the incoming query
pattern. For the static view selection this was not an issue,
because SOLVE was given all queries in advance. The
optimal set returned, after 3 days of computations in an
Ultra SPARC 60, includes 23 out of the 64 full-views in
the 6-dimensional Data Cube. The combined size of these
views when stored as Cubetrees in the disk is 281MB (1.6%
of the full Data Cube). For the most strict and unfavorable
comparison for the dynamic case, we set the size of the pool to
the same number. Since the dynamic system started with an
empty pool, we used the first 10% of the queries as a training
set and measured system’s performance for the remaining
90%. We used the SPF policy to measure the goodness of
the MRFs for the dynamic approach.

The measured cumulative DCSR for the two systems was
about the same: 64.04% for the dynamic and 62.06% for the
optimal static. The average I/O per query for the dynamic
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Figure 12: Dynamic vs Optimal-Static selection varying the
average number of grouping attributes per query

system was 108.11MB and the average write-back I/O cost
2.18MB. For the optimal static selection the average I/O per
query is 112.94MB and no write-back, without counting the
overhead of materializing the statically selected views for
the first time.

For a more clear view on the performance differences
between the static and the dynamic approach, we computed
the DCSR per view and plotted them in decreasing order of
savings in Figure 11. Notice that the x-axis labeling does
not correspond to the same views for the two lines. The
plot shows that the static view selection performs well for
the 23 materialized views, however for the rest 41 views its
savings drops to zero. DynaMat on the other hand provides
substantial savings for almost all the views. On the right hand
side of the graph are the larger views of the Data Cube. Since
most results from queries on these views are too big to fit
in the pool, even DynaMat’s performance decreases because
they can not be materialized in the shared disk space.

Figure 12 depicts the performance of both systems for a
non-uniform set of queries where the access to the views
is skewed. The skewness is controlled by the number of
grouping attributes in each query. As this number increases,6

it favors accesses on views from the upper levels of the Data
Cube lattice, which views are bigger in size and need larger
update window. These views, because of the space and
time constraints are not in the static optimal selection. On
the other hand, the dynamic approach materializes results
whenever possible and for this reason it is more robust
than the static selection, as the workload shifts to the larger
views of the lattice. As the average number of grouping
attributes per query reaches 6, almost all queries in the
workload access the single top-level six-dimensional view
of the lattice. DynaMat adapts nicely to such workload and
allocates most of the pool space to MRFs of that view. That
explains the performance of DynaMat going up at the right
hand side of the graph.

The pool size in the above experiments was set to 1.6%
of the full Data Cube as this was the actual size of the views

6Having three grouping attributes per query, on the average, corresponds
to the previous uniform view selection.
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Figure 14: Dynamic vs Optimal-Static selection for drill-
down/roll-up queries

used by the optimal static selection. This number however
is rather small for todays standards. We ran two more
experiments with pool size 5% (878MB) and 10% (1.7GB)
of the full Data Cube size. The optimal static selection does
not refine the selected views because of the update window
constraint (2%). DynaMat, on the other hand, capitalizes the
extra disk space and increases the DCSR from 64.04% to
68.34 and 78.22% for the 5% and 10% storage. Figure 13
depicts the computed DCSR per view for this case. As more
disk space is available, DynaMat achieves even more savings
by materializing more fragments from the larger views of the
Data Cube.

In the previous experiment the queries that we ran were
selected uniformly from all 64 views in the Data Cube lattice.
This is the worst case scenario for DynaMat which gains
a lot more from locality of follow-up queries. Often in
OLAP, users do drill-downs or roll-ups, where starting
from a computed result, they refine their queries and ask
for a more or less detailed view of the data respectively.
DynaMat can enormously benefit from the roll-up queries
because these queries are always computable from results
that were previously added in the pool. To simulate such a
workload we tuned our query-generator to provide 40 sets
of 500 queries each with the following properties: 40% of
the times a user asks a query for a randomly selected view
from the Cube, 30% of the times the user performs a roll-up



operation on the last reported result and 30% of the times the
user performs a drill-down.

For this experiment, we used the previous set up for the
2% and 10% time and space bound and we re-computed
the optimal static selection for the new queries. Figure 14
depicts DCSR for this workload. Compared to the previous
example, DynaMat further increases its savings (83.84%) by
taking advantage of the locality of the roll-up queries.

4 Conclusions

In this paper we presented DynaMat, a view management
system that dynamically materializes results from incoming
queries and exploits them for future reuse. DynaMat
unifies view selection and view maintenance under a single
framework that takes into account both the time and space
constraints of the system. We have defined and used the
Multidimensional Range Fragments (MRFs) as the basic
logical unit of materialization. Our experiments show that
compared to the conventional static paradigm that considers
only full views for materialization, MRFs provide a finer
and more appropriate granularity of materialization. The
operational and maintenance cost of the MRFs, which
includes any directory look-up operations during the online
mode and the derivation of a feasible update plan during
updates, remains practically negligible, in the order of
milliseconds.

We compared DynaMat against a system that is given
all queries in advance and the pre-computed optimal static
view selection. These experiments indicate that DynaMat
outperforms the optimal static selection and thus any sub-
optimal view selection algorithm that has appeared in the
literature. Another important result that validates the
importance of DynaMat, is that just 1-2% of the Data Cube
space and 1-2% of the update window for the full Data Cube
are sufficient for substantial performance improvements.

However, the most important feature of DynaMat is that it
represents a complete self-tunable system that dynamically
adjusts to new patterns in the workload. DynaMat relieves
the warehouse administrator from having to monitor and
calibrate the system constantly regardless of the skewness of
the data and/or of the queries. Even for cases that there is
no specific pattern in the workload, like the uniform queries
used for some of our experiments, DynaMat manages to
pick a set of MRFs that outperforms the optimal static view
selection. For more skewed query distributions, especially
for workloads that include a lot of roll-up queries, the
performance of DynaMat is even better.
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